

"Research on Disruptive ICT Top Technologies: Expected Impact in Context of Cybersecurity"

Prof. Dr. Axel Lehmann

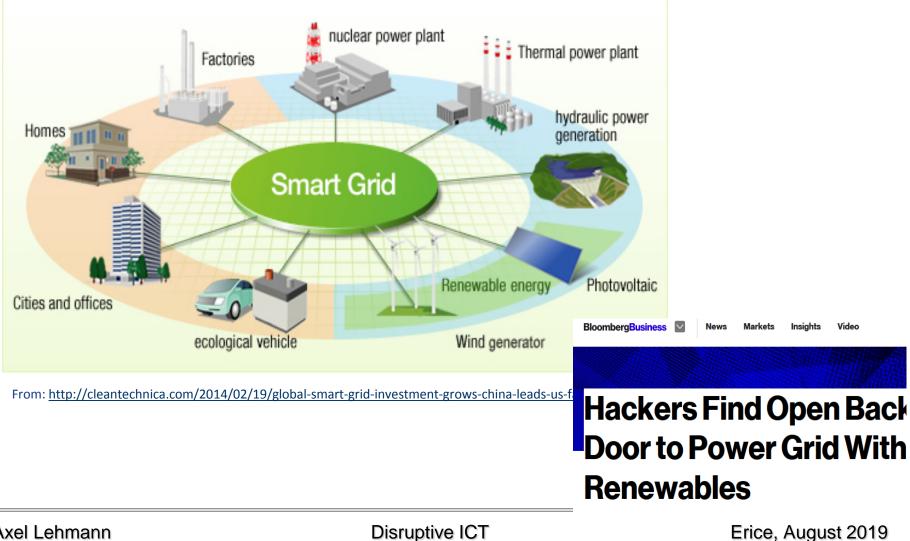
Institut für Technische Informatik, Universität der Bundeswehr München, Germany

Digital World – Status, Challenges, Approaches

"The World is becoming an intelligent, digitally enabled mesh of people, things, and services."

(Gartner Group Inc., 2017)

Axel Lehmann


Disruptive ICT

Erice, August 2019

Opportunities vs. Security Risks, e.g. Smart Grids

Axel Lehmann

Opportunities vs. Security Risks, e.g Car 2 Car

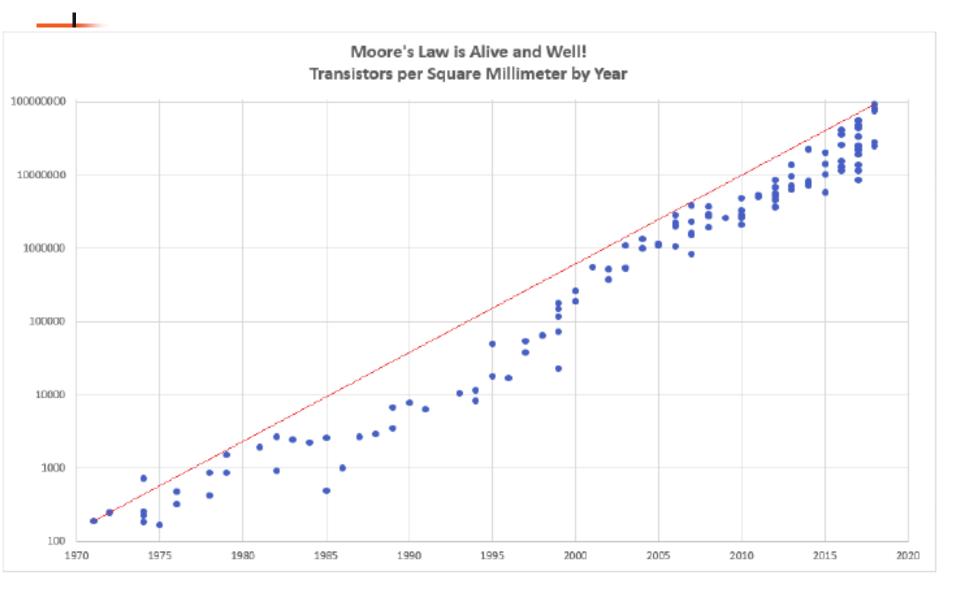
Image: https://www.car-2-car.org/index.php?id=5

Top Technology Trends of ICTs (1)

Image: Discrete the second second

Axel Lehmann

Major Technology Trends of ICTs (1)


Driving Forces for advancements in ICTs:

Major Hardware advancements
 based on"classical" semiconductor technologies:

\rightarrow "Moore's law" is still valid !

Axel Lehmann

Axel Lehmann

Major / Disruptive Trends of ICTs (2)

High-Performance-Computers:

 Sunway TaihuLight: 93 Peta-FLOPS = 93x10¹⁵
 Design of Exascale Computing: 1 trillion = 10¹⁸ FLOPS (e.g. Tianhe-3)

 (Zettabyte)-Storage Capabilities:
 > 1 Zettabyte (ZT) = 10²¹bytes; since 2016: 16 ZT; Estimates: in 2025: 165 ZT

Major / Disruptive Trends of ICTs (2)

→ "Classical" physics → Semiconductor technologies, driving forces for:

- Sensor & actuator developments
- Cyber-physical systems
- Communication networks, e.g. 5G
- increasing computing & storage capacities
- \rightarrow based on <u>quantum physics</u>:
 - > Quantum computing
 - > Quantum communication (\rightarrow crypthography)

Major / Disruptive Trends of ICTs(4)

..... new (Non-von Neumann) computing principles, e.g.:

 □ Bio-analogue / Organic Computing → self-x-properties, (x = adapting, organizing, repair,)

- □ Neural Computing (artificial neural nets) → reasoning by induction (e.g. pattern recognition)
- Artificial Intelligence applications -> machine learning, data analytics etc. (e.g. "Smart" Systems)

Important past developments in the digital age:

\rightarrow Internet:

1969: ARPANET (1st message sent by L. Kleinrock) 1989: World Wide Web (at CERN, Tim Berners-Lee)

→ 1st Smartphone:

1995: "Personal Communicator" (developed by BellSouth und IBM)

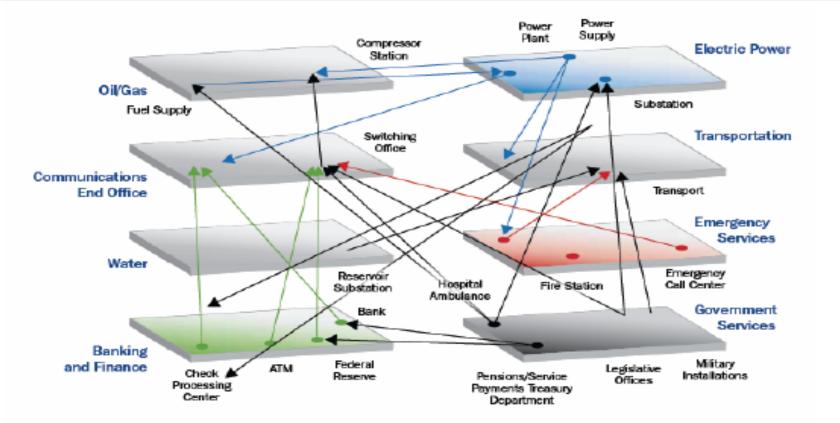
Way ahead: ????

Consequences for Cyber Security ????

Predictions are difficult,

especially when it's about the future !

(Winston Churchill; Mark Twain;)


Digital World – Current Status

In the **Digital World** social, public and business life depends on:

- * Ubiquitous, mostly invisible computing & communication
- * Global interconnectivity through internet
 - -> "Hyperconnectivity" (World Economic Forum)
- * Increasing interconnectivity between "everything" (components / systems / humans,)

-> "System-of-Systems" (Jamshidi, M., "System-of-Systems Engineering - A Definition," IEEE SMC 2005)

System of Systems Approach Needed for Understanding Interdependencies

(Graphic: Argonne National Laboratory Infrastructure Assurance Center)

Digital World – "Quo vadis" ?

* Key Questions:

-> How can we master the <u>complexity</u> of these "Systems-of-Systems"? → Impossible !!

-> How to implement <u>resilient</u> systems functionalities despite of errors, failures, misuse, manipulation,, or of natural desasters or of hacker attacks ?

-> Tremendeous Changes of values, behaviours, ... in our societies !!

Opportunities vs. Security Risks for Car 2 Car

Image: https://www.car-2-car.org/index.php?id=5

Software Complexity (LOC)

Software Size (million Lines of Code)

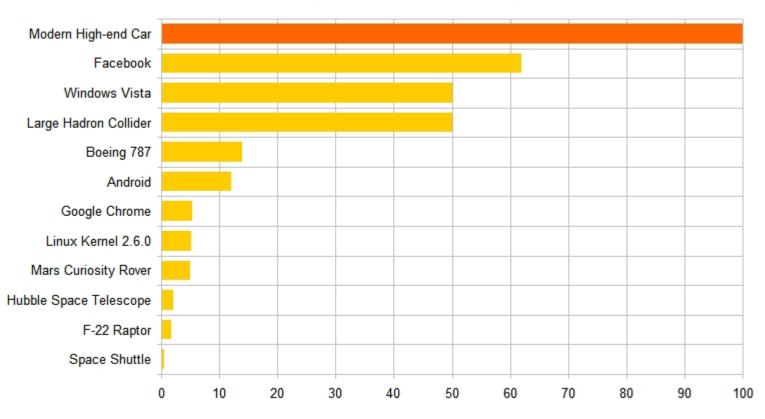


Image: https://www.linkedin.com/pulse/20140626152045-3625632-car-software-100m-lines-of-code-and-counting

Axel Lehmann

Problem: "System State Space Explosion":

- * Simple functional analysis :
 - > reachability analysis for each state → feasible for a state space size ≤ 10^{100} !!
- Numerical Analyses (of non-functional parameters, e.g. system's performance / reliability in a specific state)
 - for state space size $\leq 10^8$ (minutes on a PC) $\leq 10^9$ (computable on a PC)
 - \leq 10¹⁰ (on a PC Cluster)
- ⇒ Full state space exploration is practically impossible:
- \Rightarrow result in emergent system behaviour !!

Digital World – Challenges

- * Key Question for Scientists:
 -> Mastering the <u>complexity</u> of these
 "Systems-of-Systems"? (→ almost impossible !)
- * Required Basic Approaches:
 → Standards for systems integration
 → Design of Resilient Systems (at all system levels !) and
 - → Global Standards & Rules & Ethical behaviour

Besides its Tremendeous Benefits, the Digital World has the potential to become a Top Planetary Emergency !

Thank you very much for your interest and attention!

Axel Lehmann

Design of Resilient Digital Systems

- * Basic Technical Approaches:
 - → Strengthen redundancy of functions / components / subsystems;
 - → Intensify explorative simulations -> "data farming" experiments